Ferromagnetism in sol-gel derived ZnO: Mn nanocrystalline thin films

نویسنده

  • P. K. Shishodia
چکیده

This paper reports the growth of Mn doped ZnO thin films by sol-gel technique with different Mn concentration (0-20 %). Structural and vibrational properties have been measured by X-ray diffraction and Raman spectroscopy. The films exhibit crystalline nature with (002) preferential orientation. The crystallite size and lattice parameters have been estimated as a function of Mn concentration. The Raman spectrum of the ZnO film shows the peaks corresponding to E2 (high) mode at 434 cm -1 assigned to Zn-O bond and A1 (LO) mode at 575 cm -1 . The elemental analysis of the films have been performed using X-ray photoelectron spectroscopy confirms the presence of Zn, O and Mn in doped films. Surface morphology and roughness of the films are observed by atomic force microscopy. The optical bandgap is found to decrease with Mn concentration as estimated by Tauc’s plots. Room temperature ferromagnetism has been obtained in ZnO: Mn thin films by superconducting quantum interference device. Copyright © 2016 VBRI Press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films

In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates...

متن کامل

Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films.

We report the synthesis of colloidal Mn(2+)-doped ZnO (Mn(2+):ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn(2+):ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)(2)...

متن کامل

Effect of annealing and UV illumination on properties of nanocrystalline ZnO thin films

ZnO thin films with preferred orientation along the (002) plane were prepared onto the glass substrates by the sol-gel spin coating method for different post- annealing temperatures. The XRD study confirms that the thin films grown by this method have good crystalline hexagonal wurtzite structure. The optical band gap of the samples was determined from UV-visible spectra. It is found that the s...

متن کامل

Effect of annealing and UV illumination on properties of nanocrystalline ZnO thin films

ZnO thin films with preferred orientation along the (002) plane were prepared onto the glass substrates by the sol-gel spin coating method for different post- annealing temperatures. The XRD study confirms that the thin films grown by this method have good crystalline hexagonal wurtzite structure. The optical band gap of the samples was determined from UV-visible spectra. It is found that the s...

متن کامل

Effect of Annealing Temperatures and Pre-Heating on the Characteristics of a Nanocrystalline ZnO Thin Film Prepared by the Sol-Gel Dip-Coating Method

For effectively fabricating nanocrystalline ZnO thin films by the sol-gel method, the relationships between the temperature of the heat treatment and the quality of the ZnO thin films was observed. The decomposition of the sol was analyzed by TG-DTA. The orientation of the c-axis of the ZnO thin film was identified by XRD. The morphology was observed and estimated by SEM. The experimental resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016